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A CYLINDRICAL SHELL WITH AN AXIAL CRACK UNDER
SKEW-SYMMETRIC LOADINGTY

U. YuceoGLU and F. ERDOGAN

Lehigh University, Bethlehem, Pa.

Abstract—The skew-symmetric problem for a cylindrical shell containing an axial crack is considered. It is
assumed that the material has a special orthotropy, namely that the shear modulus may be evaluated from the
measured Young’s moduli and the Poisson’s ratios rather than being an independent material constant. The
problem is solved within the confines of an eighth order linearized shallow shell theory. As numerical examples the
torsion of an isotropic cylinder and that of a specially orthotropic cylinder (titanium) are considered. The membrane
and bending components of the stress intensity factor are calculated and are given as functions of a dimensionless
shell parameter. In the torsion problem for the axially cracked cylinder the bending effects appear to be much
more significant than that found for the circumferentially cracked cylindrical shell. Also, as the shell parameter
increases, unlike the resuits found in the pressurized shells, the bending stresses around crack ends do not change
sign.

NOTATION

a half crack length.
¢ = (E,/Ey)*
Cn = kJlk, membrane component of stress intensity ratio.
C, Kbk, bending component of stress intensity ratio.
Dy = Eh¥/12(1—vv,), (k = 1,2)
E,E;,vi,v;,Gy, elastic constants of the orthotropic shell.

stress function.
h shell thickness.
k, = Noat/h flat plate stress intensity factor.
kT kb membrane and bending components of the stress intensity factor in the shell.
N, M;, Vi, (i,j=X,Y) stress, moment, and effective shear resultants in the shell.
Ny the external load, uniform shear Ny, away from the crack.
w Z-component of the displacement in the shell.
x = X/a,y = cY/a dimensionless coordinates.
o7, 00,0 =x,y) membrane and bending stresses in the shell.
A= [12(1-v,v,)]* 4 dimensionless parameter for specially orthotropic shell.

R

1. INTRODUCTION-

SINCE the discovery of the fact that the curvature may have a significant effect on the stress
intensity factors in curved sheets containing a through crack, in recent years there has
been a considerable interest in the crack problems of shells (see, for example, [1-9]). The
general problem of a cracked shell with arbitrary radii of curvatures does not seem to
lend itself to any kind of a tractable analysis. Hence, up to now only the shells with idealized
geometries, namely, the shallow cylindrical and spherical isotropic shells containing a

t This work was supported by the National Aeronautics and Space Administration under the Grant NGR
39-007-011.

347



348 U. YuckoGLu and F. ERDOGAN

meridional crack, have been studied. In practical applications it is then understood that
the stress intensity factors necessary for the analysis of fracture and, particularly. fatigue
crack propagation in a given shell may be obtained from the perturbation problem for
a cylindrical or for a spherical shell approximating the actual shell structure in the neigh-
borhood of the crack. For this, it is clear that one needs the solution of the idealized crack
problems for cylindrical and spherical shells under both symmetric and anti-symmetric
loading conditions. With the exception of [9], where the torsion problem for a cylindrical
shell containing a circumferential crack is considered, the previous studies on cracked
shells deal entirely with the symmetric loading conditions.

Another problem in shells is the investigation of the effect of material anisotropy on
the stress intensity factors. In this case, however, even with the assumption of orthotropy,
the related differential operators are not factorable, which again makes the analysis
intractablet. On the other hand, if one assumes that the material possesses a property of
special orthotropy{, the related differential operators become factorable, and the character-
istic equation can be solved in closed form. In this case the problem can be solved without
any difficulty.

The purpose of this paper is then to obtain the solution of the problem of a specially
orthotropic cylindrical shell which contains a longitudinal crack and is subjected to
torsion. The result for the isotropic shell is obtained as a special case (see [17]).

2. FACTORIZATION OF THE DIFFERENTIAL OPERATORS

The linear bending theory of anisotropic shallow shells dates back to a paper by
Ambartsumyan [10]. The detailed treatment of the subject may be found in [11-13].
Here we will simply repeat the relevant equations in an eighth order theory for an ortho-
tropic shallow cylindrical shell. Referring to Fig. 1, let 2a be the crack length, i be the
thickness and R be the mean radius of curvature in the shell. Assume that the problem for
the shell without the crack and subjected to the given set of external loads has been solved,
and by proper superposition the problem has been reduced to one in which the membrane
and bending loads applied to the crack surface are the only external loads. Referred to

-
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F1G. 1. Cylindrical shell with an axial crack.

+ By using the method given in this paper, the orthotropic cylindrical and spherical shell problems can be
handled (in principle) by extracting the asymptotic behavior of the roots of the characteristic equation for small
and large values of the transform variable, by separating the dominant part of the singular integral equations
based on these asymptotic values, and by lumping the effects of the remaining, numerically evaluated parts with the
Fredholm kernels. However, this would require extremely involved and lengthy numerical work.

1 This is an orthotropic sheet in which the shear modulus is not independent of the elastic constants E, E,,
v, and v, ; that is, the material has three rather than four independent elastic constants.
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the orthogonal nondimensional coordinates defined by

x, = X/a, x, = Y/a, (N

the differential equations for an orthotropic shallow cylindrical shell may be expressed as
11, 13),

a* 0?
4
D,Viw(x,, xz)—-ﬁ é;?F(xbxz) =0,
hE,a* o2 (22, b)
V3F(x,, x,)+ I; 6 = w(xy,x,) =0,

where F is a stress function and w is the displacement component normal to the surface.
The following expressions for the stress strain relations in an orthotropic sheet define the
notation for the elastic constants:

1

€31 = E_‘(G“ v1032)
{
€32 = E"(Uzz""zan)» (3a—d)
2
1 v, v,

Here 1 and 2, or x, and x, are the principal directions of orthotropy in the shell. The
differential operators V7§ and V% are defined by
&t G o E2 ot
4 __ 2 21 — 12 =
v T oxt et [v2+ (=va) = E, oxlax2 E, ox3’
o* ( E, ) *  E, &*
. 0x1 2612 oxiox? E, 0x3
The stress and moment resultants are related to F and w through the following ex-
pressions:

(4a, b)

v:

N1 1 PF 1 @F
YT a2 axy 227 g% ox¥ 127 42 0x,0x,
D,[3*w  *w D,[e*w  P*w
M= ‘a‘z(a—xg”zm o M= maiga e
M D,[ 83 G o3 (el
V. — 12 _ 0w 12 w ’
1= Gt 0x, alox? \'? 3D, |éx,0x3
aM12 D, [&w WG, w
= Qo x,  a 6x§+ it 3D, Jax3dx, |’

where
D, = Er*/12(1 —v,v,), k=12 (6)
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The membrane and bending components of the stresses are obtained from the relations
of the form

o" = Ny /h....o% = 12M,Z/k3, ... (7)

By expressing the unknown functions F and w in terms of appropriate Fourier integrals,
(2) may be reduced to a system of two fourth order ordinary differential equations. The
characteristic function of this system will then be an eighth degree polynomial the coeffi-
cients of which will be functions of the transform variable. For the solution of the problem,
it is essential that the roots of this polynomial be obtainable in closed form. In the present
problem this is possible only if the elastic constants of the material are such that the
operators given by (4) can be factorized. From (4), it is clear that these operators can be
expressed in the following form

. 62 52 2 .
V] = (»T{?‘*‘\/(Ez/Eﬂa‘x% =V2 (8)

provided the elastic constants satisfy the following conditions (see [17]):

[Vz +2(1- VIVZ)%E]\/EI/EZ) =1,
1

(9a, b)
E2
(ﬁ‘vz)\/(E1/Ez) =1
By direct substitution, it can be shown that the conditions (9) will be satisfied if
E\E,)t
(E\E;) o)

12 =305 Sy

Considering also the relation (v,/E;) = (v,/E,), this means that the material has three
independent elastic constants and the fourth constant G,, is obtained in terms of an
“average” Young’s modulus (E,E;)* and an “average” Poisson’s ratio (v,v,)! by using
the standard expression for shear modulus in isotropic elastic solids. The plate for which
the condition (10) is satisfied is said to be specially orthotropic. The analysis given in this
paper will then be valid only for those materials in which the measured value of G,, and
that calculated from (10) in terms of measured E; and v;, (i = 1, 2) are in reasonably good
agreement.
Changing the variables once more as

X, = X, (E\/Ey)*x, =y, (11)

the operators V{ and V3 reduce to the following biharmonic operators:

" " 62 82 2 .

With (12), the system of equations (2) becomes identical to the differential equations for
isotropic shells in which D = Eh3/12(1 —v?*) and E are replaced by D, and E,, respectively.
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3. DERIVATION OF THE INTEGRAL EQUATIONS
By using (12), in terms of the new coordinates
x = X/a, y =cY/a, c = (E,/E,)*, (13)

the differential equations (2) may be expressed as

. a2 2
DLV*wx 1)~ T3 F(x) =
hEa o (14a, b)
V4F(x, y)+ R“ ~w(x.y) = 0.

For the stress perturbation problem, (14) must be solved under the following external
loads applied to the crack surface:

2 2
Jim My(X, Y)_—nm—%( 20w, aw) 0,

joxoat\” ay? Ul ox?
hm NyX,Y) = lim L@ZF =0
d Cy=Foa dxt
15a—d
lim NoX. V) = — tim S OF — N0 () = 140 e
i — = -
g AN y=300a% 0xdy XY olX)
. 63 h3G12 aSW
V(X,Y)= — lim — "
h_r)nm AXT) oo a® [ 0 3+c(v‘ 3D, 02x6yJ
= —VUAX) = —vy(x), (=1 <x<1),
where 14(x) = to(—x) and vy(x) = —ve( — x). Also, outside the crack, the antisymmetry of
the problem and the conditions of continuity require that
M(X,0) =0, Ny(X,0) =0,
li = 2,3), 16a—
Jim 3y L) = ylmoa —w(X, ), n=20,1,23) (16a—d)

.o .0
Iim ——F(x,y) = lim ——F(x,y), (n=0,1,23), (x> 1)
y—+0 0y" y~—~00Y"

In the problem under consideration, the external loads are self-equilibrating local
tractions. Hence the functions w and F satisfy the regularity conditions at x = F oo and,
consequentiy may be expressed in terms of Fourier integrais. Thus, using the Fourier
transforms to solve (14), and taking into consideration the antisymmetric nature of the
problem, after routine manipulations we obtain

o 4
w(x, y) = sgn(y) | Y O e)e™ P sin ax da,
¢! (17a, b)

o 4

F(x,y) = sgn(y)f Y K;Q () e™ " sin ox da,
o 1
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where
K, =K, = —i(E,hD)'"? K=K, =i(E,hD,)*.
my = — (i)' my = —(a —ijx)l,
(13)
my = —(a’+iyix)'2 my = — (& — i),
4 . . at
i = el iy = g T4 it = 12(E2/E1) —VVy)— 2h2

and the functions Q (=), (j = 1....4) are unknown. Combining (15a, b) and (16a, b), and
substituting from (17), we obtain the following two algebraic equations for Q;:

0= M) 005000
: . (19a, b)
0, = — M=) )(Q1+Q2 2(0,—0,).
iy/C

By considering the mixed boundary conditions (15¢c, d) and (16¢, d) at y = 0, two more
relations for Q; may be obtained in the form of a system of dual integral equations. Since,
by definition w and F are odd functions, in (16¢c, d) the conditions for n = 1 and n = 3 are
automatically satisfied, and analytically (16c, d) simply means that the functions which
are odd in y must vanish for y = 0, |x| > 1. Using (19), after some algebraic manipulations,
these conditions may be stated as

Jx (Q,+Q;)sinaxdx =0

f (Q, +0,)% sinax do. = 0 (20a—)
0

€X

+Q,)a? sin ax da+f ’ili(Ql Qy)asinaxda =0, (x| > 1).
0

0

Here (20a) and (20b) are, respectively, the statement of the conditions that w and 0°w/dy>
vanish on y = 0, |x| > 1. Analytically, since (20b) follows from (20a), (20) is equivalent to
only two independent conditions. Noting also that because of (20b) the first integral in
(20c) is zero, we select these two conditions as follows:

on (Q, + Q,)a? sin ax do = 0,
Ooc (21a, b)
f iAQ,—Qy)asinaxda =0, (x| > 1).

0

Here, (20b) instead of (20a) is selected because of dimensional consistency (with (20c) or
(21b)) and we note in passing that the condition w = 0 for y = 0, |x| > 1, [i.e. (20a)] still
remains to be satisfied.
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Substituting now from (17) into (15¢, d) and, again for dimensional consistency, inte-
grating (15d) once, we obtain

. c w 4 .
yllm [—? . ; K;m,Q;e™a cos ax da] = —t(x),
X 3

li D, ¢ 3.3 2 h°Gy, miy o
im -3 Z cmi —afem| vy + Q;e™sinaxdardx (22a,b)
o 1

y=+0J, 3D,

= —f vo(x) dx, (x| < 1).
0

With (19), (21) and (22) give the system of dual integral equations to determine the unknown
functions @ and Q,.

The dual integral equations (21) and (22) will be solved by reducing them to a system

of singular integral equations. For this purpose we define the following auxiliary functions :

u(x) = Jm i A(Q1— Q,) sin ax da,
0

(23a, b)

Uy(x) = Jm e} (Q,+Q;)sinaxdx, (0 < x < o0).
0]

Note that physically u; and u, are related to the second derivatives of w and F, and hence,
have the same type of singularity as N;;and M,; at the crack tips (x = F 1, y = 0). Inverting
(23) and using (21) we find

Q1(e)—Qya) =

1
— f u,(t) sin at dt,

5 (24a, b)
01(@)+ Q) = Eff u,(t) sin at dr.
0

Substituting now from (24) into (22) and using (19), we obtain the system of integral equa-
tions to determine the new unknown functions u, and u,. If we take into consideration
the symmetry properties u,(x) = —u,(—x). uy(x) = —u,(— x), these integral equations may
be expressed as

1

2
im = S byt d = £, (x < 1, 25)
1

y=+0TJ_

where the kernels h;;,

(i,j = 1, 2), are given in Appendix A and

iaty(x) 3 f"

filx) = mn=%

= m, Uo(x) dx. (263., b)

0

From Appendix A it is seen that h;; contains infinite integrals of the form

J. a*nfa, y)sinapda, (r=1,3;k=0,2)
° (27a, b)
J ony(a, y) sin ap da, (s=24;,q=—1,1),

]
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where p = t—x, or p = t. By studying the behavior of the integrands for small and large
values of %, it can be shown that in (27) the integrals corresponding to (r = 1,3; & = 0) and
(s = 2,4;9 = —1)are uniformly convergent. Hence, in the related terms in (25) the limit can
be put under the integral sign and the corresponding kernels are of the Fredholm type.
On the other hand, it is not difficult to show that for y — 0, p — 0 the integrals in (27) which
correspond to {(r = 1,3; k = 2) and (s = 2,4; ¢ = 1) become divergent. These singular
parts of the kernels may easily be separated by examining the asymptotic behavior of the
integrands for large values of «. For example, noting that for large o

alng(a,y) = ijie” ¥ 4+e 20 ), (y>0) (28)

the integral in (27) for r = 1, kK = 2 may be expressed as

x

f a?n,(a, y) sinap da = il}vJ‘

0 0
= ’.1/1”2—1)_7'*"]‘ l:
pr+y 0

where for all values of p and vy — 0 the second integral is uniformly convergent. Hence, in
(25) the limit can again be put under the integral sign giving a Fredholm-type kernel. The
integrated term in (29), substituted into (25), gives a Cauchy kernel. Similarly, for s = 2,
g = | we find

o] . 2p e]
any(a, y)sinap do = - + j [
fo g P2+y2 0

Thus, after separating the singular parts of h;; and going to limit, (25) becomes

e *sin ocpda—l—f [a?n,(a, y)—i e~ ] sin ap do
0

emt.\‘ emz.\'

)az—ilzie”:l sin ap da (29)

my iy

emly emZ.V
——t
my m,

)oc—Ze"”] sin ap do. (30)

1 2 dt i 2
f Zaiiui(t)f_x+ kij(x, tut) dt = nfi(x) (x| < 1), (31)
-1 1 - -1 1
where
Vv
ag =1 a,= 1—:;, a,, =0,
(32)
v nG
A,y = —3v1+c2+(1+c~;) (v1+ 3D:2)’

and the Fredholm kernels k; (x, t) are given by

kifx, 1) = on [Fy e, 0)—ay;] sin ot — x) da, (j=12),
0

O

kyix, t) = f F, (o, 0)[sin o(t — x) —sin at] da,
0

kyy(x,t) = _f‘% + le [F; (2, 0)— a,, 1 [sin aft — x) — sin at] de, (33)
[4]

where the functions F;(a, y) are given in Appendix A.
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Noting that u(x), (i = 1, 2)are related to the second derivatives of w and F and referring
to (14), we conclude that the elements of the fundamental matrix of the system of singular
integral equations (31) are

wi(x) = wy(x) = (1-x*)"% (34)

and the index of the system is k = 1. Thus the solution of (31) will involve two arbitrary
constants. These constants are determined by using the condition that w(x, 0) = 0 for
|x| > 1, which has not yet been satisfied. From (17), (21), and (23), recalling that —2u,(x) =
(6%/0x*(x, 0) and u,(x) = 0 for |x| > 1, the continuity condition for w may be expressed
as

1 uy() dt = 0, dx L()dt = 0. (35a, b)
I [a]

4. SOLUTION OF THE INTEGRAL EQUATIONS

To solve the system of singular integral equations (31) the technique described in [15]
is used. Noting that the fundamental functions of the system as given by (34) are the weight
functions of Chebyshev polynomials T,(x), and u,(x) = —u(—x), u5(x) = —u,(—x), the
unknown functions may be expressed as

uy(x) = (1-x3)"*Y A, T, (x),

; (36a, b)
uy(x) = (1-x37*Y B, Ty, 4(x), (x| < 1)

1

where A, and B, are unknown (complex) constants. The condition (35a) is satisfied by the
choice of u, as in (36b). (35b) gives the same result as that obtained below by directly
writingw =0atx = 1,y =0:

0=w01)=—w0, —1) = 2F (0, +0,) sin ada
0

@ 2 1 o
=2f smocda;m— ZB T l(x)(smax)%dx
d
458 [ T
22 ! dx
=238 [ T I = B ()

The remaining constants 4,, (n = 1,2,...) and B,, (n = 2,3,...) are determined by sub-
stituting from (36) into (31) and following the procedure outlined in [15].
After determining u, and u,, from (23) and (36) we find

11Ad(Q,—Q,) = z (=" lAnJZn— 1(o),
:0 (382, b)
*(Qy+Q,) = ; (=1)""'B,J 3, ().
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With (19) and (17), this formally completes the solution of the problem. In particular, the
membrane and bending stresses may be expressed in terms ofa series of infinite integrals.
For example. for the membrane stress of primary interest, o7, we have

. c ¢&*F P .
o = i ('T\c({x, = WJ;) ;Kij(a)mja e™¥ cos ax da, (y = 0). (39)

It can be shown that at (y = 0, x = F 1), the integrals in (39) are divergent, meaning that
the stresses will have a singularity at the crack tips. Noting that the integrand in (39) is
integrable around o« = 0 and is bounded and continuous elsewhere in the domain, the
divergent behavior of the integral must be due to the asymptotic behavior of the integrand
for large values of a. Thus, substituting from (38) and (19), (39) may be expressed as
AB,,)

Xy (,2

ot = z(EhD %Z (-~ 1(A—
1
X J Jono (@[ —1+oy+0c 1) e * cos ax da (v = 0). (40)
0
Noting that for large values of a [16]

Jow (@) = (=17 () > (%)2(_1)"'1[cos(a——3£)+ J (n=12.) (4]

and using the results in [16] to evaluate the integrals, we obtain the leading term in the stress
expression as follows:

2

ci e vy —C
onlr.0) = h‘Tz(Ethl)2 ; (_An+ l(_z Bn)
1 0 56
|3 cos~ |+ 00%), 42
x 4\/(2”( cos 5 +c0s 5 )+ (r¥) (42)

where (r, ) are the polar coordinates measured from the crack tip,
(x=1,y=0), r? = (x—1)2+y% tan 8 = y/(—1+x).
As an example, consider the external loads
tolx) = Ny, vo(x) = 0. (43)
Defining the following normalized functions [see (26)]:
uf(x) = ufx)fug,  (j=12),

= a’Ny  7’RNyc
" eJ(EshDy) T hJ(E(Ey)

" (44a—d)
ualk(x) = (1 _x2)-§ Z anTZn— 1(X),

M;‘(X) = (1 _XZ)*% Z bn’TZn—l(xL
1
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(42) may be expressed as

m [Nova\[.Z vl——c2 0 50 .
on = (_h_)[l;(_an+ 2 )]4\/2 )(3005 + cos 2)+O( ). (45)

Now observing that the stress intensity factor in a flat plate under uniform shear stress
Ny/h and that in a shell are defined by

k, = NoJa/h, km = llm (V2ra)a7(r, 0), (46a, b)

from (45) we obtain the membrane component of the stress intensity ratio for the shell as
follows (see [177):
k"l

0 . C2
=iy ( C—bn) . (47)
1

The remaining membrane stresses may be obtained in a similar way. Thus, for small
values of r the membrane stresses in the shell may be expressed as

P

Cuk, 0 50 12
o (r,0) = i \/ (2ra) 7 sin +s1n 5 ) +0(r''?),
C.k, 0 56 ;

—sin — n - El 4
op(r,0) = 4\/(2 sm2+sm 2)+0(r ), {(48a—)
m C.k, 0 56 N

anlr, 0 4\/2 )(3 coS — +cos 5 ) + O(r?).

Also, defining the bending component of the stress intensity factor by
kb = lim \/ Q2ra)e (r, 0) = Cik,, (49)
r—0

in a similar way the asymptotic expressions for the bending stresses around the crack tip
may be obtained as follows:

Ck, 2Z 1 (v, —c?) 8 v,~c* 50
b ’0 _ bp ™ 1 e 1 i 3
(" 0) J@Qra) h 4[2+(v,—c2)/cz][( ta oSyt a8y +0r),
ot r,0) = e 22 <
T J@ra) b 424 (v, — A= (v,v,)]
2
— 0
><{[8(1—v2c2)—v1 2c (1+7v2c2)] sin =
c 2
v, —c? . 50 .
+ lcz (1—v,c?)sin ?}+0(r7),
k, 2 2_
o";,y(r,G)= Co » 22 < h

J2ra) b 42+, —A)/E][1 - J,v,))c?

2

.0 vi—c* 50
sin 5 — 162 sin 7]+O(r%), (50a—)

v —c
! +8c2—8
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where the bending component of the stress intensity ratio is evaluated in [17] to be:

31— Vs 3 |- 2
A —-{ [1+://((:1:2))]} 21:(2+v CZC )b". oD

For the isotropic shell, the foregoing analysis remains valid with E, = E, = E, v, = v, = v,
G,, = G,andc = (E,/E,)* = 1. Note that the §-dependence of the stresses in the asymptotic
expressions given by (45), (48), and (50) is identical to that obtained from a flat plate by
using the plane stress and a fourth order linear bending theory.

5. NUMERICAL RESULTS

The elastic constants of the orthotropic shells which are considered as examples are
shown in Table 1. The table also gives the “average shear modulus™ calculated from

G, = (E1E2)%/2[1 +(V1V2)42L]- (52)

E, and E, are the elastic moduli in the axial and in the circumferential direction, respectively.

TABLE 1. ELASTIC CONSTANTS OF THE MATERIALS

Titanium Graphite
E, (psi) 1:507 x 107 1-5x 108
E, (psi) 2:08 x 107 40 x 10°
v, 0-1966 00075
v, 02714 0-2000
Gy, 6-780 x 10° 40 x 10°
G,.. 7-15x 10° 373 x 10°®

From the values given in the table it is seen that the measured values of the shear modulus,
G,,, are sufficiently close to that calculated from (52) so that the materials may be con-
sidered as specially orthotropic. For these two materials and for an isotropic material
with a Poisson’s ratio of 1/3, the numerical results are shown in Figs. 2 and 3, and in Table 2.
In all these calculations it is assumed that the cylinder is under torsion, that is, the only
external load is N, = N, = constant applied to the shell away from the crack region.

Figure 2 shows the membrane and bending components of the stress intensity factor
ratios

Cp = kJfky,  Cy=Kkifk,,  k, = No(y/a)/h, (33)
as a function of the dimensionless variable a/(Rh)* for a mildly orthotropic material,
titanium, and for an isotropic material. Since the conventional shell parameter

7 = [12(1 ~v;v,)Eo/E, J*a/(Rh)}

is dependent on the elastic constants, in order to compare the stress intensity factors in
isotropic and in orthotropic shells with the same geometry, here in presenting results
a/(Rh) is used as the independent variable. The figure indicates that, even for the mildly
orthotropic material under consideration, the deviation of the stress intensity ratios from
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E|/E2=O.724\
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3.0

20 E|/E2=O.724\

0 1.0 2

F1G. 2. Membrane and bending components of the stress intensity factor ratio, C,, and C, in isotropic
(v = 1/3) and in specially orthotropic (titanium) shell.

the isotropic values is not negligible and it becomes greater as the parameter a/(Rh)*
increases. For large values of the parameter (approximately a/(Rh)* > 4) the results are
not very reliable mainly because of the breakdown of the assumptions regarding the
particular shell theory employed in the analysis and because of the convergence difficulties
encountered in the numerical calculations.

Noting that E, and E, are, respectively, the elastic moduli in the axial and in the
circumferential direction, it is seen that for the same value of a/(Rh)! the stress intensity
ratios C,, and C, increase for decreasing E,/E,, that is, when the shell becomes stiffer in
circumferential direction (see also Table 2).7 However, this does not necessarily mean a
reduction in the resistance of the shell to shear fracture. For this one also has to consider
the shear fracture strength of the material in the plane parallel to E, as a function of E,/E,.
It is reasonable to expect that this strength too would increase as E,/E, decreases.

Figure 3 shows the stress intensity ratios C,, and C, in an isotropic shell with v = 1/3.
Here the independent variable is the conventional shell parameter 1 = [12(1 —v?))*a/(Rh)*

t This is, of course, primarily due to the multiplicative factor (E,/E )* in the expression of 4. In fact for a quick
estimate of C,, and C, in a specially orthotropic shell, the results given in Fig. 3 are sufficient provided 4 is
calculated for the orthotropic shell.
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FiG. 3. Stress intensity factor ratios, C,,, C,, vs. the shell parameter A (v = 1/3), in isotropic shells.

which was used in the previous investigations. For a fixed value of a/(Rh)* = 1-660, the
results found for an isotropic material (with v = 1/3), for titanium, and for graphite are
shown in Table 2. These results indicate that as the degree of anisotropy increases, for the
same geometry the deviation from the isotropic results also increases.

TaBLE 2. THE EFFECT OF ORTHOTROPY ON THE STRESS INTENSITY RATIOS (a/(Rh)?* = 1-660)
Isotropic
material Titanium Graphite
E\/E, 1-0 1-381 0-724 26:667 00375
30 2.811 3.304 1359 7-018
C, 1-942 1-880 2044 1.340 4.045
C, 0-199 0-158 0-239 00187 1-241

In the shells the Poisson’s ratio appears in the analysis independently as well as through
the parameter A. In the previous studies [1-9] the results were given for v = 1/3 only.
In order to have some idea about the effect of v in the isotropic shells, the stress intensity
ratios, C,, and C, were calculated in the range 0 < v < 0-5 for a fixed value of a/(Rh)* = 2686
(which corresponds to A = 5 at v = 1/3). The results are shown in Fig. 4. Even though this
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F1G. 4. The effect of Poisson’s ratio on the stress intensity factor ratios in an isotropic shell
(a/(Rh)* = 2-686).

is only for one value of a/(Rh)?, it may, nevertheless, be concluded that in isotropic shells
the effect of the Poisson’s ratio on the stress intensity factors is not expected to be significant.
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APPENDIX A
The kernels h;{x, ¢, y), (i, j = 1,2):

hifx,t,y) = f: Fy (o, y) sin oft — x) da, (j=12), (A1)
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AbcrpakT—HMccnenyercas KOCOCMMMETPUMYECKas 3afaya [Jis HWJIHHAPHYECKOH 00O0JIOvKH, HMeEoLLeit
ocebyro TpewmHy. IToapasymeBaeTcda, uTO MaTepHan XapaKTEPH3YETCH CHELHANbLHOH OPTOTPOIHEN,
MMEHHO TaKOH,YTO MOXHO HNpPaBHIIbHEE ONPEAEHUTH MOIY/b CABHra MyTeM M3iMepeHus moxyiei FOura
u kodpduumenta IlyaccoHa, yeM MpelCTaBUTh MOAY/Ib COBHIA B KauyeCTBE HE3aBHCHMOM IMOCTOAHHOM
Matepuana. 3ajavya pelleHa B paMKax JIMHEAPH30BAHHOH TEOPHM MONOTHX 00010YeK BOCBMOIO MOPAAKA.
B xayecTBe YMC/IEHHBIX IPUMEPOB, UCCIIEAYIOTCA KPYU€HHE H3OTPOIHOTO UMJIMHAPA U KPYYEHHE CIIeLHATBHO
OPTOTPONHOro uwauHapa (Turan). Bbluuciastorcs MemOpaHHbIE M M3rUOHBIE KOMIOHEHTHI daxkTOpa
MHTEHCHBHOCTH HATIPSXEHUIA 1 AatoTcs B Buac GyHkumit 6e3pasmepHoro napaMerpa obosiouku. B zanaue
KPYYEHHS [UIA WHWIMHAPA C oceObiMu TpewMHaMu, 3ddekTsl u3rnba okarsiBaiorcs Gonee 3HaYMTEALHBIMMU
MO CPaBHEHUIO C 3anaqeﬁ KPpY4YE€HUA uHJ’IHH,ElpH‘lCCKOﬁ 060J109KH ¢ TPEWHHAMH IIO OKPYXHOCTH. TaK)KC,
ecny mapaMeTp o6O0I0YKM YBENMYMBAETCA, B OTJHYHE OT PE3YJbTATOB BBIMUCIEHHLIX AJIA 000Ji0YeK mon
IaBJI€HHEM, H3THOHBIE HAMPSAXEHHs, BOKPYT KOHLOB TPEIUWHBI, HE M3MEHAIOT 3HaKa.



